Astronomové objevili vesmírnou kuriozitu, systém šesti exoplanet se synchronizovaným pohybem

 
Další 1 fotografie v galerii
Vizualizace zachycuje pohled z nejvzdálenější nalezené planety na systém kolem hvězdy TOI-178 / ESO
Pomocí řady kosmických i pozemních přístrojů byla objevena soustava s šesti exoplanetami, z nichž pět se kolem své mateřské hvězdy pohybuje vzácně synchronizovaným způsobem.

Vědci se domnívají, že tento systém by mohl poskytnout neocenitelné informace o procesech vzniku a vývoje planet i ve Sluneční soustavě.

Když členové týmu poprvé sledovali systém TOI-178, který se na obloze nachází v souhvězdí Sochaře a je vzdálený asi 200 světelných let, domnívali se, že se jim podařilo zaznamenat dvojici planet obíhající kolem hvězdy po stejné dráze.

Detailní průzkum ale ukázal něco zcela jiného. „Následná pozorování a jejich analýza ukázaly, že se nejedná o dvě planety obíhající kolem hvězdy v podobné vzdálenosti, ale spíš o několik planet ve velmi neobvyklé konfiguraci,“ říká Adrien Leleu, hlavní autor nové studie, která byla publikována ve vědeckém časopise Astronomy & Astrophysics.

Výzkum ukázal, že systém hostí šest exoplanet a kromě té nejbližší se všechny ostatní pohybují po oběžných drahách s navzájem vázanou periodou – jsou v takzvané rezonanci.

To znamená, že v systému existují konfigurace, které se při oběhu planet kolem hvězdy neustále opakují, a některé planety se dostávají do stejné pozice každých několik oběhů. Podobné rezonance drah pozorujeme ve Sluneční soustavě u trojice Jupiterových velkých měsíců Io, Europa a Ganymedes. Io, nejbližší z měsíců Jupiteru, oběhne kolem planety 4krát během jednoho oběhu Ganymedu. A na jeden oběh Europy, nejvzdálenějšího z této trojice, připadají právě dva oběhy Ganymedu.          

Pět vnějších planet v systému TOI-178 však jeví mnohem složitější řetězec rezonancí, dokonce jeden z nejdelších, jaký byl dosud v planetárním světě popsán. Zatímco tři měsíce Jupiteru jsou v rezonanci popsané poměrem 4:2:1, pět planet systému TOI-178 má řetězec s poměry 18:9:6:4:3, to znamená, že na 18 oběhů druhé planety v systému (první v tomto řetězci) připadá 9 oběhů třetí planety (druhé v řetězci) a tak dále.

Vědci ve skutečnosti nejprve nalezli pouze pět planet tohoto systému, ale na základě popsaného systému rezonancí spočetli, v jakém místě své dráhy by se mohla nacházet další planeta během příštího pozorovacího okna.      

Nejedná se však pouze o kuriozitu. Tento rezonanční tanec planet poskytuje důležité informace o minulosti celého systému. „Dráhy v této soustavě jsou velmi precizně uspořádány, což znamená, že celý systém se od svého zrození vyvíjel relativně poklidně,“ vysvětluje spoluautor Yann Alibert z University v Bernu. Pokud by soustava byla jakýmkoliv způsobem výrazně narušena v rané fázi vývoje, například srážkou planet, tato křehká konfigurace drah by se nezachovala.  

Nepravidelnosti v rytmu systému

„I když je uspořádání drah téměř dokonalé, hustoty planet jsou rozloženy mnohem nepravidelněji,“ říká Nathan Hara z Université de Genève, který se na studii rovněž podílel. „Zdá se, že hned vedle planety s hustotou podobnou Zemi se nachází velmi ‚načechraný‘ soused s poloviční hustotou než Neptun a následuje planeta s hustotou Neptunu. Na něco takového nejsme zvyklí.“ Planety ve Sluneční soustavě jsou uspořádány podle hustoty rovnoměrněji – hustější kamenné se nacházejí blíže ke Slunci a méně husté plynné planety dále.

„Tento kontrast mezi rytmickou harmonií orbitálních pohybů a nepořádkem v rozložení hustoty je rozhodně výzvou pro naše chápání vzniku a vývoje planetárních systémů,“ říká Adrien Leleu.

Kombinace metod

K výzkumu neobvyklé architektury tohoto systému použili členové týmu data ze satelitu CHEOPS (ESA, European Space Agency), pozemních pozorování přístrojem ESPRESSO pro dalekohled ESO/VLT a také z přehlídek NGTS či SPECULOOS, které obě pracují na Observatoři Paranal v Chile. Jelikož je velmi obtížné přímo zobrazit exoplanety pomocí dalekohledu, musí astronomové místo toho spoléhat na jiné techniky detekce.

Hlavními jsou metoda tranzitů – pozorování světla mateřské hvězdy, které je oslabeno v okamžiku, kdy při pohledu ze Země planeta přechází přes disk hvězdy – a měření radiálních rychlostí – spektroskopická metoda umožňující odhalit pohyb hvězdy ve směru od nás a k nám při oběhu exoplanety po oběžné dráze. Členové týmu využili obě tyto metody k pozorování systému TOI-178: přehlídky CHEOPS, NGTS a SPECULOOS při pozorování tranzitů a přístroj ESPRESSO k měření radiální rychlosti hvězdy.

Díky kombinaci obou technik byli astronomové schopni získat klíčové informace o systému TOI-178 a jeho planetách, které obíhají kolem centrální hvězdy mnohem blíže a mnohem rychleji, než  Země kolem Slunce. Vnitřní, nejbližší planeta obíhá nejrychleji – během několika dní – zatímco nejvzdálenější planetě oběh trvá asi 10krát déle. Velikosti planet se pohybují v rozmezí od jednoho do tří průměrů Země, zatímco hmotnosti jsou v rozsahu od 1,5 až po 30 hmotností Země. Některé planety jsou kamenné, ovšem větší než Země – řadíme je do kategorie super-Zemí. Ostatní jsou plynné, podobně jako vnější planety Sluneční soustavy, jsou však mnohem menší – řadíme je do kategorie mini-Neptun.     

I když žádná z objevených exoplanet neleží v obyvatelné zóně kolem mateřské hvězdy, vědci naznačují, že pokračování rezonančního řetězce by mohlo vést k objevení dalších planet ležících velmi blízko obyvatelné zóny nebo přímo v ní. Dalekohled ESO/ELT, který by měl zahájit svou činnost v tomto desetiletí, bude schopen přímo zobrazit kamenné exoplanety v obyvatelné zóně této hvězdy a dokonce zkoumat jejich atmosféry. Nabídne tak možnost seznámit se se systémem TOI-178 ještě detailněji.

Mohlo by vás zajímat

Reklama