Pomocí extrémně silných laserů chtějí vědci vytvářet hmotu a antihmotu přímo ze světla

Infrastruktura P3 (Plasma Physics Platform) na ELI Beamlines, kde budou probíhat experimenty. / ELI Beamlines
Hvězdné objekty, jako jsou pulsary, mohou díky svým extrémním energiím vytvářet hmotu a antihmotu přímo ze světla. Magnetické pole neboli „magnetosféra“ pulsaru je totiž naplněno elektrony a pozitrony, které vznikají při srážkách fotonů.

Reprodukovat stejné jevy v pozemské laboratoři je podle odborníků z ELI Beamlines nesmírně náročné. Vyžaduje to hustý oblak fotonů s energií milionkrát vyšší než viditelné světlo.

Tento fotonový oblak však vědci nebyli schopni vytvořit. Teorie však naznačují, že by to mělo být možné za pomoci vysoce výkonných laserů. Infrastruktura pro extrémní světlo (ELI ERIC) jako první mezinárodní výzkumná infrastruktura zaměřená na použití vysoko výkonových laserů s vysokou intenzitou takové možnosti výzkumu umožní.

ELI ERIC je výzkumná infrastruktura s více pracovišti založená na specializovaných a vzájemně se doplňujících zařízeních ELI Beamlines (Česká republika) a ELI ALPS (Maďarsko). Nové kapacity ELI vytvoří nezbytné podmínky pro testování těchto teorií v laboratoři.

Tento projekt kombinuje teoretické znalosti Kalifornské univerzity v San Diegu (USA), experimentální znalosti ELI Beamlines, jakož i výrobu terčů a technické znalosti společnosti General Atomics (USA).

Projekt v hodnotě zhruba 23 milionů korun, který společně financují NSF a GA ČR, povede profesor Alexey Arefiev z Kalifornské univerzity v San Diegu. Vývoj terčů pro lasery s vysokou opakovací frekvencí bude probíhat v General Atomics pod vedením Dr. Maria Manuela, zatímco primární experimenty budou prováděny na ELI Beamlines týmem vedeným Dr. Florianem Condaminem a Dr. Stefanem Weberem.

Koncepci projektu vypracovala Arefievova výzkumná skupina na Kalifornské univerzitě v San Diegu, která se specializuje na superpočítačové simulace intenzivních interakcí světla s hmotou. Tento projekt využívá efektu, který nastává, když jsou elektrony v plazmatu urychleny na rychlost blízkou rychlosti světla vysoce výkonným laserem. Tento efekt se nazývá „relativistická průhlednost“, protože způsobuje, že dříve neprůhledné husté plazma se stává pro laserové světlo průhledným.

V tomto režimu se při šíření laseru plazmatem vytvářejí extrémně silná magnetická pole. Během tohoto procesu relativistické elektrony oscilují v magnetickém poli, což následně způsobuje emisi gama záření, převážně ve směru laseru.

„Je velmi povzbudivé, že jsme schopni generovat taková magnetická pole, která dříve existovala pouze v extrémních astrofyzikálních objektech, jako jsou neutronové hvězdy,“ říká Arefiev. „Schopnost laserů ELI Beamlines dosáhnout velmi vysoké intenzity na terči je klíčem k dosažení tohoto režimu.“

Tyto experimenty poskytnou první statisticky relevantní studii generování gama záření pomocí vysoce výkonných laserů. Vědci doufají, že tato práce otevře cestu k sekundárním vysokoenergetickým zdrojům fotonů, které bude možné využít nejen pro základní fyzikální studie, ale také pro řadu důležitých průmyslových aplikací, jako je materiálová věda, zobrazování jaderného odpadu, analýza jaderného paliva, bezpečnost, hloubková radiografie s vysokým rozlišením atd.  Takové „extrémní zobrazování“ vyžaduje robustní, reprodukovatelné a dobře kontrolovatelné zdroje záření gama. Společný projekt NSF a GA ČR je zaměřen právě na vývoj takových bezprecedentních zdrojů.

Experimentům výrazně napomáhá další technologický pokrok. Až donedávna mohla výkonná laserová zařízení provést přibližně jeden výstřel za hodinu, což omezovalo množství dat, která bylo možné shromáždit.

Nová zařízení, jako je ELI Beamlines, jsou však schopna provádět několik výstřelů za sekundu. Tyto možnosti umožňují statistické studie interakcí mezi laserem a terčem způsobem, který byl ještě před několika lety nemožný. To znamená, že k plnému využití schopností laserů je nutný posun ve způsobu navrhování a provádění experimentů.

Zdroj: ELI Beamlines, Grantová agentura ČR

Mohlo by vás zajímat

Reklama